
Introduction to scripting with Gig Performer

Draft V0.51

Dr. David H Jameson
Nebojsa Djogo

Deskew Technologies, LLC

August 5, 2018

Introduction

The Gig Performer scripting language, which we have rather unimaginatively named GP Script,
is a special purpose language designed to add programmable and responsive functionality to Gig
Performer. For example, you can write scripts with code that can respond to incoming MIDI note
events and then transpose them, make chords out of them constrained to a scale, or use them to
change widget values or to directly control parameters of a plugin (keyboard tracking, anyone?).
Script code can be triggered in response to your moving a knob, slider or button. There are also
time generators that can be used as LFOs (with varying shapes) or as ADSRs.

Events and callbacks

Generally, GP Script is event driven. It doesn’t do anything until something “happens” such as
your playing a key, turning a knob, switching to another rackspace or to a different variation. A
certain amount of time passing can also count as something “happening”. All of these examples
are known as events and when you write code that can respond to an event, that code is called a
callback. GP Script can currently handle the following events:
• Initialization
• Rack activation
• Rack deactivation
• Variation change
• Midi events (notes, CC values, aftertouch, etc.)
• Widget changes
• Plugin parameter changes
• LFOs (also known as Time Generators)
• OSC Messages (coming soon)

A simple example

var  pi : double  	
initialization 	
 pi = 3.14159 	
 Print(pi) 	
end

So, what’s going on here? Well, first we declared a variable called pi and whose value must be a
floating-point number (double). In GPScript all variables must be declared, and they must have a
type. The type of a variable defines the kinds of values that the variable can represent and also
determines what kinds of operations can be applied to it. So called strongly typed languages
make it easier to prevent certain kinds of common bugs.

The keyword initialization defines the beginning of a callback that will be executed just once
when a rackspace is initially loaded. In this example we simply assign a value to the variable and
“print” its value. In the context of Gig Performer, printing means to show the item in a special
window called the Script Logger. The keyword end completes the definition of this callback.

A more interesting example

// Declare a global variable
var  A800 : MidiInBlock // A800 is a named block in Gig Performer 

// Callback when	a	note	event	(on	or	off)	is	received
On NoteEvent (m : NoteMessage) From A800
  SendNow(A800, m) // Send the note to the A800 MidiIn block
  SendNow(A800, Transpose(m, 5)) // Also send a transposed note 
End

Like before, the first thing we’re doing is declaring a variable. But unlike the example above that
just used a floating-point number, the variable A800 is declared with the type MidiInBlock.
That type represents a Gig Performer MidiIn plugin block. Consequently, the name of the
variable, in this case, A800, is significant. For this script to work there must be a MidiIn block in
your rackspace and its scripting name, more properly known as a handle, must be A800. So in
this example, we are binding a variable name to an entity in Gig Performer.

Note the handle name on the upper left and the {S} on the upper right,

the latter indicating that the handle is available for use in GP Script

Next, we define a callback. A callback is a block of code that will run automatically when the
event associated with that callback occurs. The callback above responds to MIDI note events
(both NoteOn and NoteOff events) that arrive at the MidiIn block named A800. There are other
callbacks that respond to other MIDI events such as Control Change events or Aftertouch. The
actual message itself is accessed through the incoming parameter argument m which has the type
NoteMessage.

Once you define a callback for a MIDI event you have full responsibility for that event.
GP Script will not automatically send the MIDI event back to the MidiIn block which means that
the MidiIn block will not forward the event to whatever synth plugins are connected to it. So if
you want the incoming note to be played, you have to explicitly send it out, which we do with
the statement SendNow(A800, m). Immediately afterwards, we send the note again, after
transposing it by 5 semitones. Voila, instant chords.

Basic concepts

GPScript is a programming language designed specifically for use with Gig Performer. Rather
than integrating an existing language such as Lua, Python or ChaiScript and living with some
compromises, we felt it worthwhile to have an essentially seamless environment that would
immediately make sense. The clean syntax reflects that integration. GPScript is influenced more
by Algol/Pascal.While we will assume for now that the reader has at least some basic
understanding of programming there will be plenty of samples to help users to get up to speed
quickly.

As mentioned above, GPScript is a strongly typed language; every variable must be declared
along with a type. However, along with the usual types such as integers, strings, doubles and so
forth, GPScript has built-in types that represent plugins, widgets, various kinds of LFOs and
some special purpose types such as NoteTracker and ChordDictionary.

So as easily as you can write

var i : integer

to represent an integer value and perform operations such as addition and subtraction, you can
write

var A800 : MidiInBlock

which represents a named MidiInBlock, presumably associated with an A800 MIDI keyboard
controller. Now you can do operations such as manipulate incoming MIDI messages before
sending them on to whatever audio plugin is connected to it.

GPScript includes the usual looping and conditional statements and of course you can define
your own functions. There is also an extensive collection of efficient built-in functions you can
leverage.

The latest list of built-in functions is best viewed online at
https://gigperformer.com/downloads/GPScript/SystemFunctionList.html

Scripts belong to rackspaces, meaning that you can have a completely separate script running in
each of your rackspaces.

Tip: The top of the GP Script IDE has two buttons, that provide you with
templates to help you get started as well as system function code
completion.

Statements

Assignment

Syntax: <Identifier> ‘:=’ <Expression>

Assign an expression to a variable. Example:

a := 42
b := a + 1

// You can also write an assignment using just the ‘=’ character

Str = “I don’t like C syntax”

For

Syntax: For <Assignment> ‘;’ <BoolExpression> ‘;’ <Assignment> Do
<Statements> End

The for loop lets you iterate a statement block until the Boolean expression evaluates to false. It
is often used to process an array of values.

Example

For i = 0; i < 10; i = i + 1 Do
 //statements here
End

While

Syntax: While <BoolExpression> Do <Statements> End

The While statement lets you loop though a block of statements until the Boolean expression
evaluates to false. The important difference between a While loop and a For loop is that the
former does not have an explicit clause to update the expression to be tested.

Example

Done = false
While !Done Do
 // Statements, one of which ultimately sets Done to true
End

Be very careful with both these looping constructs. If the condition does not ultimately evaluate
to false, the loop will never end and Gig Performer will hang.

If

Syntax:

If <BoolExpression>
 Then <Statements>
 [[Elsif <BoolExpression>
 Then <Statements>]
 Else <Statements>]
End

This is the usual conditional test. The requirement for End prevents bugs due to the “dangling
else” problem. The Elsif clause (as many as you need) is optional as is the Else clause.

Select

Syntax:

Select
 [<BoolExpression> do <Statements>]

End

The Select statement is a better option than the If statement when you need to test for many
conditions. While similar in concept to the C “switch” statement or the Pascal “case” statement,
the Select statement doesn’t require each case to be a constant value.

Example:

select
 a > b do
 Print(“A is greater than B”)

 TimeNow() - previousTime > 1000 do
 Print(“At least one second has passed”)
 previousTime = TimeNow()

 true do
 Print(“This executes if none of the other expressions were true”)
end

Function calls

GP Script includes a large and growing collection of system functions for a variety of purposes
such as math functions (rounding or scaling numbers), creation and modification of MIDI
messages, management of function generators.

User functions

You can also write your own functions in GPScript

Syntax:

Function <name> ([<identifier> : <type> [, <identifier> : <type>]])
[Autotype] [Returns <type>]
<Local variable declarations>
<Statements>
End

Functions must have a unique name. Zero or more parameters can be defined and parameters are
always passed in by value. Note that types such as Widgets, Plugins and dynamic arrays are
objects and so what’s really being passed by value is the reference (a pointer) to the object.

Functions can optionally return a value in which case the Returns clause must be present. If the
Returns clause is present, then a variable called result exists in the function scope and
whatever is assigned to that variable will be the return value.

There is no mechanism to return from the middle of a function.

Example

Function SumNumbers(a,b,c : integer) returns integer
 result = a + b + c

End

Function PlayMajorChord(keyboard : MidiInBlock, root : NoteMessage)
 SendNow(keyboard, root) // Original note
 SendNow(keyboard, Transpose(root, 4)) // The third
 SendNow(keyboard, Transpose(root, 7)) // The fifth
End

Operators

GP Script has the usual comparison operators (<, >, <=, >=, ==, !=) as well as boolean operators
(And, Or, Not). Precedence rules are such that you very rarely require parentheses. GP Script
also has a ternary operator following the style of Algol and, more recently, Haskell

Result = if widgetValue > 0.5 then 1 else 0

Note that the ‘else’ is not optional in the ternary operator

Callbacks - GPScript provides the following callbacks:

Initialization

initialization
 // initialization code here. There can only be one of these
end

Activation

on activate
 // Called whenever rackspace is activated
end

on deactivate
 // Called whenever we deactivate a rackspace
end

Variations

on variation (oldVariation : integer, newVariation : integer)
 // Called when you switch to another variation
 // The parameters indicate which one you're in now
 // and from which one you came
end

MIDI events (Requires global variable associated with a Midi In Block)

On NoteOnEvent (m : NoteMessage) From A800
 // Called whenever a Note On message is received
End

On NoteOffEvent (m : NoteMessage) From A800
 // Called whenever a Note On message is received
End

On NoteEvent (m : NoteMessage) From A800
 // Called whenever a Note On or Note Off message is received
 // Warning: this callback will not be invoked for NoteOn events
 // or for NoteOff events if you have defined
 // NoteOnEvent or NoteOffEvent respectively callbacks
End

On ControlChangeEvent (c : ControlChangeMessage) From A800
End

On PitchBendEvent (p : PitchBendMessage) From A800
End

On AftertouchEvent (a : AfterTouchMessage) From A800
 // This is channel pressure
End

On PolytouchEvent (p : PolyTouchMessage) From A800
 // This is note-specific pressure
End

On ProgramChangeEvent(p : ProgramChangeMessage) From A800
End

Constrained MIDI events

The Note events (Note, NoteOn, NoteOff) and the ControlChange event can optionally include a
constraint that specifies either a range or an explicit sequence of numbers for which the callback
is triggered. For example:

On NoteEvent (m : NoteMessage) Matching [C3..C4] From A800
 // This event is only called if you play a note with
 // a MIDI note number that is in the range 60 to 72
End

On ControlChangeEvent (c : ControlChangeMessage) Matching 1,7,14 From A800
 // This event is only called for controller numbers
 // 1, 7 or 14
End

When you used constrained events, you can have multiple events of the same kind as long as
their ranges have no overlaps. The main purpose of this mechanism is to allow you to specify
callbacks for specific purposes without having to handle all events in your script. For example,
you might create a callback to handle key switches where the bottom octave of your keyboard is
used for controlling some effects while notes in other octaves are handled normally.

If you create a callback with no constraints, then any subsequent callbacks with constraints will
cause a compilation error because your non-constrained callback is handling all possible values.

On the other hand, if you create some callbacks with constraints and add a non-constrained
callback afterwards, then that last callback will apply just to values that have not been specified
in previously defined constrained callbacks.

Widget events (Requires global variable associated with widget)

On WidgetValueChanged (newValue : double) from SomeWidget
 // newValue represents a value between 0.0 and 1.0
End

Plugin events (Requires global variable associated with a plugin block)

On ParameterValueChanged(index : integer, value : double)
 // The parameter number and new value of the parameter
End

Generator events (Requires global variable associated with a generator)

On TimePassing(x : integer, y : double)
 // x is linear time based on the length (or frequency) of the generator
 // y is an amplitude with a value ranging between 0.0 and 1.0
 // The actual value for y at some position x depends on the kind
 // of generator and the settings being used
End

OSC callback

On OSCMessageReceived(message : OSCMessage) Matching StringConstant
 // StringConstant will be an explicit OSC Address to which this
 // callback will respond
 // Use the OSC functions in the system library to access the
 // arguments of the received message
End

Playhead events

On BeatChanged(barNumber : Integer, BeatNumber : Integer, tick : Integer)
 // Called every time the beatNumber increments
 // Note that barNumber and tick are currently unused
 // This is experimental
end

System events

On SystemEvent(newValue : double) Matching PlayheadStateChanged
 // Indicate that the playhead has been started (1.0) or stopped (0.0)
 // This is experimental
End

Reference

Comments

You can have both line comments and multiline comments. Single line comments start with a
double slash and end at the line end.

// This is a line comment

Block comments start with /* and end with */ and they can be nested.

/*
 This is a
 multiline comment and
 /* you can nest multiline comments */
 as well
*/

Constants

GPScript supports integer, floating point, boolean and string constants (more on strings below).
For convenience, MIDI note names can be used in place of integers. E.g, C3 is the same as 60,
D#4 (or Eb4) is the same as 75.

Declarations

You can declare global variables and local variables. The general syntax for a declaration is

var identifier : type

If you want to declare multiple variables of the same type, just separate them with a comma

var i, j, k : integer

If you are declaring multiple variables one after the other, you do not need to repeat the var
keyword (although you can)

var i : integer
 s : string
 n : NoteMessage

Global variable are defined outside of any callbacks or user-defined functions and are visible
only from the point at which you declare them. Certain types such as Plugins, Widgets and
function generators (ADSR, Ramp, etc.,) can only be declared at global scope.

The Type system

All variables must be declared with a type.

Primitive types

Primitive types include integer, double and boolean. With a couple of exceptions, operators for
primitive types are part of the language syntax itself. For example, arithmetic operators (+,-
,*,/,%) and comparators (<, <=, ==, !=, >, >=) can be used on both integers and doubles.

Opaque types

Opaque types are types whose behavior is controlled completely by system functions and you
have no direct access to them. Variables that refer to “physical” widgets and plugin blocks
instances of opaque types. Some opaque data types do not have any “physical” existence. These
include function generators, the NoteTracker and the ChordRecognizer types. Over time, as new
functionality is added to Gig Performer, more opaque data types are likely to be added.

Hybrid types

There are a couple of types that are treated specially, with some built-in operations even though
they are otherwise opaque.

Strings

Language designers struggle with the best way to handle strings. Some leave all string
processing up to their libraries (but still have language support to define string constants), others
make strings be a special type with language support. GP Script adopts the latter approach.
While there are as yet no string processing system functions (and it’s unclear what functions
might actually be needed within the context of Gig Performer automation), the + operator is
overloaded so that strings can be concatenated together. More importantly, if you start an
expression with a string type, then the RHS of the + operator can be of type integer or double and
the value will be automatically converted to a string type. This makes it easy to write such things
as

Print(“The value is “ + i) // Display the value of i in the script log
window

and is mainly intended for debugging purposes although it can be convenient to use this
mechanism to set the caption of a label or widget, e.g.,

SetWidgetCaption(w, “Value: “ + v)

Array

It is possible to have arrays of types (although currently you cannot have an array of arrays).
Arrays currently have a maximum length of 128 (no prizes for guessing why that value). Array
indexing is zero-based.

var mySmallArray : integer[32]

This creates an array that can contain 32 values. Attempts to reference the array outside the
defined range will be trapped by the runtime system and the script terminated. While this adds a

little cost, we feel that array range errors are sufficiently common that it’s worth the cost. In the
future, we may add an option to disable range checking.

You can pass arrays as dynamic parameters to functions and the system function size will return
the current size of the array parameter.

Function IntSum(someArray : integer array) returns integer
 var s : integer // Track the sum
 index : integer

 for i = 0; i < size(someArray); i = i + 1 do
 s = s + someArray[i]
 end

 result = s // Return the result
End

Dynamic array

Rather than defining a constant size, you can add the keyword Array after any primitive type to
create a dynamic array.

For example, the following declaration is allowed

Var
 Fader1, Fader2, Fader3, Fader4 : Widget
 Faders : Widget Array

Initialization
 Faders = [Fader1, Fader2, Fader3, Fader4] // Array initialization
End

Then you can use array indices to reference individual widgets. The size function works as
expected and will return the current size of the array which of course is 4 in the above example.

Operators
Boolean operators

GPScript includes the usual Boolean operators but has some interesting additions to make
scripting a little easier for users.
in

The in operator allows the left hand side, normally an integer or a floating point number to be
tested against an integer or floating point respectively range. So you can write

if n in [C3..C4] then

The variable n would normally be an integer type. However, this will also work if n is a
NoteMessage or a ControlChangeMessage and in these cases the note number or controller
number will be used.

